Herramientas

HTML

PDF

Metadatos de indexación

Cómo citar un elemento

Imprimir este artículo

Política de revisión

Envía por correo este artículo (Se requiere entrar)
Enviar un correo electrónico al autor/a (Se requiere entrar)

Inteligencia artificial explicable, una perspectiva al problema de la clasificación automática de COVID-19 mediante radiografías de tórax

José Daniel López Cabrera, Marlen Pérez Díaz

Resumen


Esta investigación pretende dilucidar, a partir del análisis de técnicas de inteligencia artificial explicables, la robustez y el nivel de generalización de los métodos de visión por computadora propuestos para identificar COVID-19 utilizando imágenes de radiografías de tórax. Asimismo, alertar a los investigadores y revisores sobre el problema del aprendizaje por atajos. En este estudio se siguen recomendaciones para identificar si los modelos de clasificación automática de COVID-19 se ven afectados por el aprendizaje por atajos. Para ello, se revisaron los artículos que utilizan métodos de inteligencia artificial explicable en dicha tarea. Se evidenció que al utilizar la imagen de radiografía de tórax completa o el cuadro delimitador de los pulmones, las regiones de la imagen que más contribuyen a la clasificación aparecen fuera de la región pulmonar, algo que no tiene sentido. Los resultados indican que, hasta ahora, los modelos existentes presentan el problema de aprendizaje por atajos, lo cual los hace inapropiados para ser usados en entornos clínicos.

Palabras clave


inteligencia artificial; clasificación; radiografía torácica; COVID-19

Texto completo:

HTML PDF

Enlaces refback

  • No hay ningún enlace refback.


Editada en la Universidad de las Ciencias Médicas de Cienfuegos. Directora: Dra.C Dunia María Chavez Amaro